Indestructibility and stationary reflection

نویسنده

  • Arthur W. Apter
چکیده

If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ-strategically closed forcing and λ is weakly compact, then we show that A = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets} must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a Mahlo cardinal in which the least supercompact cardinal κ is also the least strongly compact cardinal, κ’s strongness is indestructible under κ-strategically closed forcing, κ’s supercompactness is indestructible under κ-directed closed forcing not adding any new subsets of κ, and δ is Mahlo and reflects stationary sets iff δ is weakly compact. In this model, no strong cardinal δ < κ is indestructible under δ-strategically closed forcing. It therefore follows that it is relatively consistent for the least strong cardinal κ whose strongness is indestructible under κ-strategically closed forcing to be the same as the least supercompact cardinal, which also has its supercompactness indestructible under κ-directed closed forcing not adding any new subsets of κ. ∗2000 Mathematics Subject Classifications: 03E35, 03E55. †

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unprepared Indestructibility

I present a forcing indestructibility theorem for the large cardinal axiom Vopěnka’s Principle. It is notable in that there is no preparatory forcing required to make the axiom indestructible, unlike the case for other indestructibility results. §

متن کامل

Forcing indestructibility of MAD families

Let A ⊆ [ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families wh...

متن کامل

An equiconsistency for universal indestructibility

We obtain an equiconsistency for a weak form of universal indestructibility for strongness. The equiconsistency is relative to a cardinal weaker in consistency strength than a Woodin cardinal, Stewart Baldwin’s notion of hyperstrong cardinal. We also briefly indicate how our methods are applicable to universal indestructibility for supercompactness and strong compactness. ∗2000 Mathematics Subj...

متن کامل

Some Applications of Sargsyan’s Equiconsistency Method

We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.

متن کامل

3 A ug 1 99 8 Universal Indestructibility

From a suitable large cardinal hypothesis, we provide a model with a supercompact cardinal in which universal indestructibility holds: every supercompact and partially supercompact cardinal κ is fully indestructible by <κ-directed closed forcing. Such a state of affairs is impossible with two supercompact cardinals or even with a cardinal which is supercompact beyond a measurable cardinal. Lave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2009